
An Open Platform for 3D Face Recognition Algorithms  

Hassen DRIRA
a
, Boulbaba BEN AMOR

b,a
, Mohamed DAOUDI

b,a
, Anuj SRIVASTAVA

c
, 

and Joseph COLINEAU
d
 

a
LIFL (UMR CNRS 8022), Université de Lille1, France ; 

b
Institut TELECOM, TELECOM Lille 1, France ; 

c
Departement of Statistics, FSU, Tallahassee, FL 32306, USA ; 

d
THALES-TRT, 91767 Palaiseau, France. 

 

Abstract 

In this paper we describe a new open platform designed to integrate 3D face matching algorithms for 
recognition. Its main purpose is to provide experimental environment to online operational testing of 3D 
face recognition approaches, in laboratory conditions. The proposed platform consists of: (i) An 
acquisition module that interfaces with Minolta 3D laser-based scanner, (ii) A preprocessing 
sub-system allowing detection and segmentation of the useful part of the face from the depth image 
(scanner’s output) and its processing (iii) A face matching module that incorporates matching 
algorithms, and (iv) A decision component that provides the final matching result. Moreover, we show 
an integration example of our algorithm [1] and discuss experimental results. Our 3D facial matching 
algorithm currently integrated to the proposed platform represents facial surfaces by indexed 
collections of radial curves on them, emanating from the nose tips, and compares the facial shapes by 
comparing the shapes of their corresponding curves. Using a framework on elastic shape analysis of 
curves, we obtain an algorithm for comparing facial surfaces. We also introduce a quality control 
module which allows our approach to be robust to pose variations and missing data. Comparative 
evaluation using a common experimental setup on GavabDB

1
 dataset, considered as the most 

expression-rich and noise-prone 3D face dataset, shows that our approach outperforms other 
state-of-the-art approaches. 
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1. Introduction 

The various tools that are called Biometric Technologies are simply means physiological 
characteristics, human body parts and their appearances, used to recognize individual human beings 
in the course of daily activities. The appearances of body parts, especially in imaged data, have a large 
variability and are influenced by their shapes, colors, illumination environment, presence of other parts, 
and so on. Therefore, the researchers have focused on body parts and images that minimize this 
variability within class (persons) and maximize it across classes. Since 2D (visible light) images of 
faces are greatly susceptible to variations in the imaging environments (camera pose, illumination 
patterns, etc.), the researchers have argued for the need to use 3D face data, typically collected by 
laser scanners, for studying shapes of peoples' faces and using this shape analysis for biometrics. The 
outputs from laser scanners are minimally dependent on the external environmental factors and 
provide faithful measurements of shapes of facial surfaces. The only remaining variability that is 
manifested within the same class, i.e. within the measurements of the same person, is the one 
introduced by changes in facial expressions and significant pose variations, in addition to the data 
quality. Fig.1 illustrates main 3D face recognition challenges. 
 
Facial expressions, such as smile, serious, fear, and anger, are prime indicators of the emotional state 
of a person and, thus, are important in estimating mood of a person, for example in developing 
intelligent ambient systems, but may have a lesser role in biometric applications. In fact, variations in 
facial expressions change the shapes of facial surfaces to some extent and introduce a detrimental 
variability that has to be accounted for in shape-based 3D face recognition. The other important issue 
is related to data collection and imperfections introduced in that process. It is difficult to obtain a 
pristine, continuous facial surface, or a mesh representing such a surface, with the current laser 
technology. One typically gets holes in the scanned data in locations of eyes, lips, and outside regions. 
For instance, scans of people with open mouths result in holes in the mouth region.  

                                                      
1
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Fig.1. the main 3D face recognition challenges. 

 
Existing 3D face recognition methods can be classified into two categories. First, some methods, such 
as Mousavi et al. [12], Mahoor et al. [10], and Li et al. [9], are interested in adopting low-level geometric 
features to face recognition for several reasons. They claim that they spend less effort in extracting 
features unlike the methods that are based on extracting high-level features, e.g., shapes of facial 
curves [14], concave and convex facial regions [2], partial face regions [6][11], or deformation distance 
metrics [8]. The latest methods constitute the second category, and their recognition performance 
generally depends on the reliability of the features. For this reason, it is necessary to spend effort to 
extract these features and look for elaborate tools to compare them. For example, shape analysis can 
be a good candidate especially it has shown good performance in previous works [14]. In Samir et al. 
[15], the level curves of the surface distance function that resulted in 3D curves are used. The authors 
used a non-elastic metric and a path-straightening method to compute geodesics between these 
curves. Here the matching was not studied and the correspondence of curves and points across faces 
was simply linear. However, the open mouth corrupts the shape of some level curves and this 
parameterization does not handle this problem. To avoid this problem of open mouth, Drira et al. [4] 
proposed partial biometrics. That is, they studied the contribution of only the nasal region in 3D face 
recognition using a similar level curves-based approach. They used elastic matching for curves 
comparison. Mpiperis et al. [13] proposed a geodesic polar parameterization of the face surface. With 
this parameterization, the intrinsic surface attributes do not change under isometric deformations when 
the mouth is closed. When the mouth is open it violates the isometry assumption and they modify their 
geodesic polar parameterization by disconnecting the lips. Therefore, their approach requires lips 
detection. Bronstein et al. [4] use multi-dimensional scaling on pair-wise geodesic distance to embed 
the surface to a 4D shpere were classification is performed on the basis of normalized moments. As 
[13], their approach requires also lips detection. Berretti et al. in [2] and [3], proposed to use features 
derived from the surface paths around the nose. In [3], the radial curves were extracted as features, 
and then matched using SVM classifiers. In [2], a compact graph representation is constructed for 
each face. In this way, the structural similarity between two face models is evaluated by matching their 
corresponding graphs. In our approach described in more details in [1], we explore the use of shapes 
of elastic radial curves to model 3D facial deformations, caused by changes in facial expressions. First, 
we extract radial curves as facial features. Then, we apply elastic shape analysis in order to keep the 
intrinsic surface attributes under isometric deformations even when the mouth is open. Unlike previous 
works dealing with large facial expressions, especially when the mouth is open [13][4] which require 
lips detection, our approach mitigates this problem without any lip detection.  
 
The main contribution of this paper is to present a new open platform designed to incorporate 3D facial 
matching algorithms and allows their operational testing. The rest of the paper is organized as follows. 
Next, section 2 gives an overview of the proposed platform with an integration example of our facial 
surfaces comparison algorithm. In section 3, we describe the common data pre-processing module. 
Section 4 describes the principles of our Riemannian framework to analyze shapes of radial curves 
and its extension to compare facial surfaces. We demonstrate in section 5 the performance to 
recognize people in presence of both expression and pose variations. The section 6 provides some 
concluding remarks. 

2. Overall platform architecture 

This section describes all modules of the platform and proposes an integration example of our 
algorithm in that platform. Fig.2 shows the environment of the developed platform (software) including 
the Minolta 3D laser-based scanner and the RFID-based reader system. The developed software 
interfaces with the 3D scanner and the RFID system using their Software Development Kits. All 3D 
mesh processing steps are developed following an oriented object programming process using the 
C++ language.           
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Fig. 2. The developed platform (software) in his testing environment (laboratory conditions). 

 
After their acquisition by interfacing with the Minolta scanner, the probe image P and the gallery image 
G acquired images are pre-processed. This step is essential to improve the quality of the depth images 
and to extract the useful part of the face. It consists of a Laplacian smoothing filter to reduce the 
acquisition noise, a filling hole filter that identifies and fills holes in input mesh, and a cropping filter that 
cuts and returns the part of the input mesh inside of a specified sphere. The preprocessing module 
outputs 3D meshes of the useful part of the faces to be compared that present the inputs of the 
matching algorithm. 
 

 
 

Fig. 3. Overview of the proposed platform with our matching algorithm [1] integration. 
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In order to compare probe and gallery faces, our matching algorithms correct their poses by performing 
coarse then fine alignments. The coarse alignment is performed based on the translation vector 
formed by the tips of the noses. This step is followed by a finer alignment based on the well-known ICP 
algorithm in order to correct their pose. Next, we extract the radial curves emanating from the nose tip 
and having different directions on the face. Within this step, a quality control module inspects the 
quality of each curve on both meshes and keeps only the good ones based on defined criteria [1]. In 
order to improve matching and comparisons between the extracted curves, we advocate the use of 
elastic matching. Actually, facial deformations due to expressions can be attenuated by an elastic 
matching between facial curves. Hence, we obtain algorithm for computing geodesics between 
pairwise of radial curves on gallery and probe meshes. The length of one geodesic measures the 
degree of similarity between one pair of curves. The fusion of the scores on good quality common 
curves, produced similarity score between the faces P and G. Fig. 3 illustrates the pipeline of modules 
that form the proposed platform with an integration example of our matching algorithm [1]. 

3. 3D data pre-processing  

This module belongs to the open platform as essential step to improve the quality of input depth 
images and to discard undesired parts (clothes, neck, ears, hair, etc.). Indeed, these images outputs of 
laser scanners present some imperfections as holes, spikes and so on. As illustrated in Fig. 4, this step 
consists of a pipeline of 3D mesh processing filters:  
 

i. Filling holes filter identifies and fills holes in input meshes. Holes are created either because 
of the absorption of laser in dark areas such as eyebrows and mustaches, occlusion or mouth 
opening. They are identified in the input mesh by locating boundary edges, linking them 
together into loops, and then triangulating the resulting loops.  

ii. Cropping filter cuts and returns parts of the mesh inside a defined implicit function. This 
function is a sphere defined by the nose tip as its center and the radius 75mm in order to avoid 
as much hair.  

iii. Smoothing filter reduces high frequency information (spikes) in the geometry of the mesh, 
making the cells better shaped and the vertices more evenly distributed.  

 

Fig. 4. Pipeline of filters in the pre-processing steps. 

 
The development of the pre-processing module is based on The Visualization ToolKit

2
 routines. VTK 

consists of a C++ class library and provides a suite of mesh processing filters.      

4. Facial shapes analysis and comparison module 

After data pre-processing, our goal is to compare shapes of facial surfaces using their facial radial 

curves. In other words, we represent surfaces by an indexed collection of simple, open curves in  
and the geometry of a surface is then studied using the geometries of the associated curves [1]. Let  

                                                      
2
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be a facial surface denoting the output of the previous preprocessing step. Although  is a 

triangulated mesh, we start the discussion by assuming that it is a continuous surface. Let  denote 
the radial curve which make an angle  with a reference radial curve. The reference curve is chosen 
to be the vertical curve once the face has been rotated to the upright position. In practice, each radial 

curve  is obtained by slicing the facial surface by a plane  that has the nose tip as origin and 
makes an angle  with the plane containing the reference curve. That is, the intersection of  with 

 gives . We repeat this step to extract all radial curves from the facial surface at equal angular 
separation. This indexed collection of radial curves, captures the shape of a facial surface and forms 
our mathematical representation of that surface. We have chosen to represent a surface with a 
collection of curves since we have better tools for analyzing shapes of curves than we have for 
surfaces. More specifically, we are going to use an elastic framework for studying shapes of curves 
that is especially suited to modeling deformations associated with changes in facial expressions. The 
shape analysis-based comparison of the radial curves is detailed in [1].  

 

Fig. 5. Examples of inter-class geodesics (different subjects). 

 

Fig. 6. Examples of intra-class geodesics (same subject, different expressions). 

Since we have geodesic paths denoting optimal deformations between individual curves [1], we can 
combine these deformations to obtain full deformations between faces. In fact, these full deformations 
are geodesic paths between faces when represented. As mentioned earlier, we are going to represent 
a face surface  with an indexed collection of radial curves. The indexing provides a correspondence 
between curves across faces. For example, a curve at an angle  on face 1 is matched with the curve 
at the same angle on face 2. Shown in Fig.5 and Fig.6 are examples of such geodesic paths between 
source and target faces. It is clear that the geodesic in the shape space models in a naturel way the 
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deformation from the source to the target, especially in mouth region. We present the illustrations in 
both cases; case of inter-class path (source and target belong to different persons) and intra-class path 
(source and target belong to the same person). 3D faces used in this illustration are taken from 
FRGCv2 dataset [16]. This computation provides several quantities of interest. Firstly, if we consider 
each facial curve as an independent feature, then we get a metric for each feature. We can then use 
any metric-based classifier of these features to result in a feature-by-feature classification of faces. On 
other words, we can use individual radial curves on faces for classifying people. Secondly, it provides a 
Riemannian distance between shapes of full facial surfaces by combining distances between the 
corresponding radial curves. Thirdly, since we have geodesic paths denoting optimal deformations 
between individual curves, we can combine these deformations to obtain full deformations between 
faces. In this work, we define the distance between faces as a combination of individual distances [1].  

5. Experiments and evaluations 

Our algorithm for representation and matching of 3D faces has been evaluated using the GavabDB 
database. To the best of our knowledge, GavabDB is the most expression-rich and noise-prone 3D 
face dataset currently available to the public. The GavabDB consists of Minolta Vi-700 laser range 
scans from 61 different subjects. The subjects, of which 45 are male and 16 are female, are all 
Caucasian. Each subject was scanned 9 times for different poses and expressions, namely six neutral 
expression scans and three scans with an expression. The neutral scans include two different frontal 
scans, one scan while looking up (+35 degree), one scan while looking down (-35 degree), one scan 
from the right side (+90 degree), and one from the left side (-90 degree). The expression scans include 
one with a smile, one with a pronounced laugh, and an arbitrary expression freely chosen by the 
subject (see Fig.7).  
 

 

Fig. 7. Examples of 3D scans of the same subject from Gavab dataset. 

 
In our experiments, one of the two frontal models with the neutral expression provided for each person 
is taken as a gallery model whereas the rest are considered as probe images.  

Table.1. Comparison of recognition rates using different methods : (a) Neutral, (b) Expressive, (c) 
Neutral+expressive, (d) Rotated looking down, (e) Rotated looking up, (f) Overall, (g) Scans from right sight, (g) 

Scans from left sight. 

 Li et al. [8] Moreno et al. [10] Mahoor et al. [9] Berretti et al.[1] Mousavi et al. [11] Our 

(a) 96.67% 90.16% 95% 94% - 100% 
(b) 93.33% 77.9% 72% 81% - 94.54% 
(c) 94.68% - 78% 84.25% 91% 94.67% 
(d) - - 85.3% 80% - 100% 
(e) - - 88.6% 79% - 98.36% 
(f) - - - 82.66% 81.67% 96.99% 
(g) - - - - - 70.49% 
(h) - - - - - 86.89% 

 
Table 1 illustrates the results of the matching accuracy for different categories of probe faces. We 
notice that our approach provides high recognition accuracy for expressive faces (94.54%) comparing 
to state-of-the-art approaches. This is due to both face parameterization using radial curves and elastic 
matching techniques. Actually, each curve represents a feature that characterizes a local region in the 
face contrary to the parameterization using closed level curves. Besides, the elastic matching is able to 
establish a correspondence with guaranteed alignment among anatomical facial features. As far as 
neutral expressions are concerned, the accuracy depends on the pose. Actually, the accuracy is not 
affected when the pose is frontal or rotated looking down (the recognition rate is 100%). According to 
scans from right and left sides, the accuracy is not very high as missing data are significant. To the 
best of our knowledge, no earlier work included scans from left and right sights in their experimental 
protocol when using Gavab dataset. Therefore, we show in table 1 comparison with other methods on 
a subset of Gavab dataset (without these scans). Notice that the experimental protocol is the same; 
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one of the two frontal neutral scan is chosen as gallery, remaining faces constitute the probe dataset. 
As shown in the table 1, our method outperforms all other ones in terms of recognition rates. 

Table.2. Computational cost of the proposed approach to compare two 3D faces 

Step Time consumed (s) 

Mesh preprocessing 0.375 (per face) 
Mesh alignment 0.125 

Curves extraction 0.485 (all curves, 2 faces) 

Quality control 0.000001875 (per curve) 

Curve preprocessing 0.137 (per curve) 

Curve comparison 0.0318 (per curve) 

Overall 7.7 

 
Table 2 presents the time consumed for different steps of the algorithm on a PC with a 3 Ghz Core 2 
Duo processor with 3 GB memory. In order to assess the effectiveness of the proposed solution for 
face identification, we performed extensive experiments. In these experiments, one of the two frontal 
models with the neutral expression provided for each person is taken as a gallery model for the 
identification. 

6. Conclusions 

In this paper we developed an open platform for 3D face recognition algorithms. This platform provides 
an acquisition module which interfaces with the Minolta 3D scanner and a pre-processing sub-system 
that extracts and prepares the useful part of the face for the matching step. Moreover, we describe an 
original solution for 3D face matching under facial expressions and poses changes, integrated to the 
proposed platform. This platform contributes to research development in 3D face biometric field by 
providing tools for operational testing of developed algorithms.  

Acknowledgements  

This research is supported in part by the ANR under the project ANR-07-SESU-004 and the Contrat de 
Projet Etat-Région (CPER) Région Nord-Pas de Calais Ambient Intelligence and partially supported by 
the following grants: ARO W911NF-04-01-0268 and AFOSR FA9550-06-1-0324 to Anuj Srivastava. 
Additionally, Anuj Srivastava was supported by visiting professorships from University of Lille I and 
CNRS in summers of 2007-2009. 

References 

1. Hassen Drira, Boulbaba Ben Amor, Mohamed Daoudi, and Anuj Srivastava. Pose and 
Expression-Invariant 3D Face Recognition using Elastic Radial Curves. In Proceedings of the 
British Machine Vision Conference, pages 90.1-90.11, 2010. 

2. Stefano Berretti, Alberto Del Bimbo, and Pietro Pala. 3d face recognition by modelling the 
arrangement of concave and convex regions. In Proceedings of Adaptive Multimedia Retrieval, 
pages 108–118, 2006. 

3. Stefano Berretti, Alberto Del Bimbo, Pietro Pala Francisco Silva-Mata. Face recognition by svms 
classification of 2D and 3D radial geodesics. In Proceedings of International Conference on 
Multimedia & Expo, pages 93–96, 2008. 

4. Alexander M. Bronstein, Michael M. Bronstein, and Ron Kimmel. Expression invariant 
representations of faces. IEEE Transactions on Image Processing, 16(1): 188–197, 2007. 

5. Hassen Drira, Boulbaba Ben Amor, Anuj Srivastava, and Mohamed Daoudi. A Riemannian 
analysis of 3d nose shapes for partial human biometrics. In Proceedings of International 
Conference on Computer Vision, pages 2050–2057, 2009. 

6. Timothy C. Faltemier, Kevin W. Bowyer, and Patrick J. Flynn. A region ensemble for 3-d face 
recognition. IEEE Transactions on Information Forensics and Security, 3(1): 62–73, 2008. 

7. Shantanu H. Joshi, Eric Klassen, Anuj Srivastava, and Ian Jermyn. A novel representation for 
Riemannian analysis of elastic curves in IR

n
. In Proceedings of International Conference on 

Computer Vision and Pattern Recognition, 2007. 
8. I. A. Kakadiaris, G. Passalis, G. Toderici, M. N. Murtuza, Y. Lu, N. Karampatziakis, and T. 

Theoharis. Three-dimensional face recognition in the presence of facial expressions: An annotated 
deformable model approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 
29(4):640–649, 2007. 

International Conference on 3D Body Scanning Technologies, Lugano, Switzerland, 19-20 October 2010

235



9. Xiaoxing Li, Tao Jia, and Hao Zhang. Expression-insensitive 3d face recognition using sparse 
representation. Computer Vision and Pattern Recognition, In Proceedings of International 
Conference on Computer Vision and Pattern Recognition, 0:2575–2582, 2009. 

10. Mohammad H. Mahoor and Mohamed Abdel-Mottaleb. Face recognition based on 3d ridge images 
obtained from range data. Pattern Recognition, 42(3):445–451, 2009. 

11. Ana Belen Moreno, Angel Sanchez, Jose Fco. Velez, and Fco. Javier Díaz. Face recognition using 
3d local geometrical features: Pca vs. svm. In Int. Symp. on Image and Signal Processing and 
Analysis, 2005. 

12. Mir Hashem Mousavi, Karim Faez, and Amin Asghari. Three dimensional face recognition using 
svm classifier. In Proceedings of the Seventh IEEE/ACIS International Conference on Computer 
and Information Science, pages 208–213, Washington, DC, USA, 2008.  

13. Iordanis Mpiperis, Sotiris Malassiotis, and Michael G. Strintzis. 3-d face recognition with the 
geodesic polar representation. IEEE Transactions on Information Forensics and Security, 
(3-2):537–547. 

14. Chafik Samir, Anuj Srivastava, and Mohamed Daoudi. Three-dimensional face recognition using 
shapes of facial curves. IEEE Transactions on Pattern Analysis and Machine Intelligence, 
28:1858–1863, 2006. ISSN 0162-8828.  

15. Chafik Samir, Anuj Srivastava, Mohamed Daoudi, and Eric Klassen. An intrinsic framework for 
analysis of facial surfaces. International Journal of Computer Vision, 82(1):80–95, 2009. 

16. P. Jonathon Phillips, Patrick J. Flynn, Todd Scruggs, Kevin W. Bowyer, Jin Chang, Kevin Hoffman, 
Joe Marques, Jaesik Min, and William Worek. Overview of the face recognition grand challenge. In 
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern 
Recognition (CVPR'05) - Volume 1, pages 947-954, 2005. 

International Conference on 3D Body Scanning Technologies, Lugano, Switzerland, 19-20 October 2010

236




