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Abstract 

The patient 3D model reconstruction plays an important role in applications such as surgery planning 
or computer-aided prosthesis design systems. Common methods use either expensive devices or 
require expert personnel which are not available in every clinic. Thus to make patient-specific 
modelling more versatile, it is required to develop efficient methods together with feasible devices. 
Body parts such as head and torso present valid challenges with different degrees of complexity, 
especially because of the absence of relevant and abundant features. 
Considering Microsoft Kinect, it is a low-cost and widely available sensor, which has been successfully 
applied in medical applications. Since single depth-map acquired by Kinect is often incomplete and 
noisy, different approaches have been proposed to perform the reconstruction by merging multiple 
depth-maps, by registering single view point clouds generated form each point cloud. As human body 
is a non-rigid model, most of previous reconstruction methods using Kinect fail to perform accurate 
reconstruction since they do not address non-rigid surfaces.  
In this paper we present the challenges of using low-cost RGB-D sensors to reconstruct human body. 
Additionally, we analysed coarse registration stage to understand its impact on the quality of 
reconstruction on both rigid and non-rigid data. Also comparative research has been performed to 
study different coarse registration methods such as Spin Image (SI), Curvedness, and Principal 
Component Analysis (PCA). Studies showed that the quality of reconstruction is directly related to 
robustness of reconstruction method to the rotational and translation noise. Regarding analytical 
comparisons, results indicate the positive impression of applying coarse registration on both rigid and 
non-rigid data. Moreover, evaluations show PCA presents better results among other considered 
methods. Finally it is shown that down-sampled models present less error. 
 
Keywords: 3D models, calibration, multiple views, rigid and non-rigid registration 
 

1. Introduction 

In recent years, the emergence of three-dimensional (3D) scanning technologies has influenced a 
variety of areas of knowledge, including those related with biomedical research and the development 
of applications for healthcare. Forasmuch as the 3D representations of patients are to be used within a 
medical environment, it is required to use devices and methods with enough accuracy. In addition, to 
be used in a broad manner, issues like cost, transportability and usability requirements need to be 
taken into account. In that sense the introduction of consumer depth cameras like Microsoft Kinect, 
which capture real-time per-pixel depth information along with RGB images, has supported an 
extensive amount of related work [1]. Planning of surgery is an example which has been enhanced by 
the use of patients’ 3D representations. For instance, in [2], Oliveira et al. utilized 3D data of patients to 
extract complementary features required for breast shape aesthetical objective evaluation, with the 
objective of evaluating the outcome of such medical procedure. 
 
As a mid-resolution and low-cost device, the Microsoft Kinect has been proved to be accurate enough 
to be used as medical acquisition device in particular contexts [2, 3, 4, 5], however it is not compromise 
free. Beside limitations related to inevitable tolerances in its manufacturing process, its own 
characteristics (e.g. field of view, resolution, acquisition rate and working range) and different sources 
of noise affect any acquired single-view data, thus making it impossible to retrieve the 3D shape using 
only a single depth-map. In that manner it is often desirable to merge different views into a richer and 
more complete 3D representation of body parts. This process is called multi-view registration and can 
be done in several ways as depicted in figure 1. 
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Fig. 1. The different possible approaches for multi-view registration. 
 
A 3D representation of a body part can be obtained by: (a) merging the views directly, without any 
pre-processing; (b) detecting robust keypoints which provide a representative description of the point 
clouds and aligning the views bases on the transformation that aligns the keypoints; (c) aligning the 
views first and then performing the registration. The alignment stage is called coarse registration, and 
aims at computing an initial estimation of the rigid motion between the views, either based on keypoint 
detection or not. It is followed by a fine registration stage, which looks for the most accurate solution 
possible, being the Iterative Closest Point (ICP) [6] the gold standard methodology for fine registration. 
This is the standard registration approach, since the human body is nearly featureless and the 
preliminary alignment stage diminishes the computational complexity and the processing time. At each 
stage of the pipeline, inlier selection methodologies can be applied, such as the Random Sample 
Consensus (RANSAC). They look for the most representative subset of points, eliminating those which 
can compromise the results of the registration. 
  
The point cloud registration process has been studied in [7] comprehensively. In it, Salvi et al. review 
the different registration approaches. We inferred about the capabilities of such methodologies 
towards the reconstruction of body parts and to meet the requirements of usability and complexity. 
Concerning keypoint extraction methodologies, Spin Images [8] and Curvedness [9] are two commonly 
used descriptors, respectively related with distances between points and planes and with bending 
energy of surfaces. On the other hand, for coarse registration (alignment stage), Principal Component 
Analysis (PCA) [7, 10], is expected to perform well. 
 
The objective of this paper is to evaluate the usability of the aforementioned registration methodologies 
for the reconstruction of body parts. In the other hand, we intend to discuss challenges related with 3D 
reconstruction within medical context, concerning the acquisition and computing constraints with 
respect to quality of reconstructed objects. In this regard, this paper is organized in three parts. In 
section 2 related works on point cloud generation from RGB-D data and 3D reconstruction methods 
are discussed followed by a brief summary of prominent challenges. In section 3 we present a study of 
the impacts of using different coarse registration methodologies, together with the effects of number of 
points on the quality of reconstruction for both rigid and non-rigid datasets. Comparisons and further 
discussions on the studied coarse methods are presented in section 4. Finally in Section 5 the main 
conclusion of the present work are present. 

2. Related work 

Over the past few years, different research groups worked on the reconstruction of body parts using 
the Microsoft Kinect and were able to identify and overcome some of the existing challenges. Such 
previously identified challenges are related with calibration parameters, noise, acquisition and 
reconstruction software.  
 
The Kinect uses structured light and machine learning tools to output RGB-D data that can be used to 
generate coloured point clouds given calibration parameters [11]. Although Microsoft Kinect provides 
manufacturing calibration data stored in the device's memory, alternative methods for Kinect 
calibration have been proposed ([12, 13]). Han et al. [14] recognized the valuable contribution of such 
works on the Kinect calibration since the precision of the point cloud generation increased. 
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Nonetheless, newer versions of the Software Developers Kit (SDK) already address such calibration 
related issues. The usage of factory supplied parameters avoids additional calibration procedures, 
thus improving usability and reducing the need for further intervention. However, due to possible 
structural changes in the device body, either by manufacturing tolerances and/or small structural 
changes that affect the Kinect components over time, there is still the necessity of re-calibration 
procedures.  
 
Besides the accuracy of the calibration parameters, different sources of noise affect the Kinect data. 
Mallick et al. [14] recently presented a review paper systematizing Kinect noise-related work. In that 
regard, the authors highlight the fact that Kinect’s depth sensor relies on the comparison of a known 
pattern against each new frame retrieved from its infra-red (IR) camera. Each frame is supposed to 
contain a specular pattern projected by Kinect itself and deformed by real world scene. Since it is an 
active sensor, not only multiple devices can interfere with the measurements of each other, but also 
other sources of IR light, like halogen operating room lights [16] or even direct sunlight, can degrade 
the reconstructed depth images. Also, transparent, specular, and reflective surfaces must be avoided 
since they greatly affect the projected dot pattern and are, therefore, prone to introduce noise in the 
data [14]. 
 
Different reconstruction studies that merge information from multiple-views can be found. In many 
situations, the patient is asked to rotate in front of the Kinect, which creates some occlusions and 
difficulties on the scanning (for instance, the underarms). Solutions that modify predefined silhouettes 
of the body while scanning, such in [17], have been proposed. Alternatively the usage of multiple 
Kinect devices [18] has been tested; however, some interference between devices has been observed 
[14], as well as an increase in the computational cost and a decrease on the portability. Nonetheless, it 
is possible to define a set of constraints, similarly to Tong et al. [18] in their three-Kinect scanning 
system. Concerning the usage of a single Kinect, the gold standard reconstruction software is the 
Kinect Fusion [19], developed by the homonymous Microsoft research group. It merges iteratively the 
incoming depth-maps into a single reconstructed model. However, the reconstruction is only accurate 
for rigid objects, presenting a high computational cost. 
 
Other methods, although presenting accurate reconstruction results, but refer manual intervention as a 
limitation within the medical context. For instance, the methodology proposed by Li et al. in 2013 [20] 
can be mentioned. The authors claimed to perform the registration without the presence of operator, 
since user can select eight input views; nonetheless, for medical applications, neither patients nor 
clinic operators are expert enough to select appropriate views. 
 
The human body itself is a non-rigid model, since patient breathes or moves unexpectedly during the 
acquisition, needing compensation parameters or deformable registration methods. In [21], the authors 
studied such problem and proposed a method which can compensate the effect of breath on the chest, 
while patient is being scanned.  
 
 

2.1. Wrapping up challenges 

The previously identified challenges related to the application of reconstruction methods within the 
biomedical context are listed in table 1Table. It is possible to understand that the majority of the 
previously identified challenges are related with either the used models or the acquisition set-up, 
demanding the identification of the reconstruction software-related challenges. 
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Table1. Comparing methods and identified challenges within medical context 

 

 

Heavy 
computation 

cost 

 

Reconstruct 
only rigid 
objects 

 

Restrictive 
acquisition 

set-up 

 

Additional 
intervention 
necessary 

Description 

Tong et al. 
[18]  

  X  

 

Requires 3 Kinects to be installed in 
predetermined positions; 
   

Izadi et al. 
[19]  

X X   

 

Need GPU processing due to heavy 
computation; remove moving objects; 
  

Patete et al. 
[21]  

X    
 
Uses breath artefact compensation 
 

Li et al. 
[20]  

   X 

 

Requires expert personnel to select 
appropriate views 
 

Herrera et al. 
[13]  

   X 

 

Depth map quality improved trough 
calibration procedure 
 

 

3. 3D reconstruction study 

Motivated by the discussed challenges, in the following section we describe a simple 3D reconstruction 
study using the aforementioned registration, alignment and keypoint extraction methods. Two different 
experiments have been conducted using both rigid models and non-rigid models. The reconstruction of 
rigid models under different initial poses of the views allowed the characterization of the tested 
methodologies, and the reconstruction of the non-rigid counterparts gave insight about their 
applicability in a biomedical context. Such tests were run in Matlab 2013b and executed in a machine 
with Intel core i7 @ 3.70 GHz, 8GB RAM processor. 
 
3.1. Data sets 

3.1.1. Rigid models 

The used rigid data set contains both the Horse and Bunny Models from Stanford Computer Graphics 
Laboratory

1
, sampled to 10% and 50% of the original number of points. Different views were obtained 

by partitioning the entire point cloud to 10 views, each having overlapping areas with adjacent views. 
During the registration study, such models were disturbed with artificial initial misalignments in terms of 
rotation and translation in order to evaluate the robustness of the reconstruction methods. The two 
rigid models being used in this research were disturbed with artificial rotation from 0 to 35 degrees 
iterating each 5 degrees, while the translation (here defined as shift factors) are defined to be 1/100, 
1/50 and 1/10 of the longest distance inside each point cloud. 
 
3.1.2. Non-rigid models 

The non-rigid data set contains two different models: a human head model and a female torso model 
from eight breast cancer patients. The acquisition of raw RGB-D data from the Kinect follows the 
protocol established within the context of the PICTURE Project

2
. The Kinect is placed on a tripod at 90 

cm from the subject being scanned. The images are taken consecutively at 15 frames per second 
while the subject performs a 180º rotation between lateral views, with hands on the hips, in front of a 
homogeneous blue background panel and the region of interest of each model was manually 
segmented. The ground-truth for the female torso model was obtained using a commercial 3D scanner, 
and, the ground-truth for the human head was acquired using the Kinect Fusion. 
 
Custom made software was implemented in C/C++ to process the data from the Kinect using the 
Microsoft Software Development Kit (SDK) v1.8. The calibration data extracted from the SDK was 
used to create multiple point clouds from the observed scene. 
 
 
1
 https://graphics.stanford.edu/data/3Dscanrep/ 

2
 http://vph-picture.eu/ 
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3.2. Methodology 

3.2.1. Keypoint extraction 

We evaluated the keypoint extraction stage from point clouds using two standard implementations of 
the Spin Image and the Curvedness algorithm to two adjacent point clouds belonging to the rigid data 
set. Concerning the usage of Curvedness for the feature detection, the work of Feldmar et al. in [22] 
[ was implemented. First, the Gaussian and Mean curvatures for each point were calculated using the 
Moving Least Squares Algorithm, as implemented by Yang et al. [23]. Then, the maximum and 
minimum �� and ��	curvatures were used to compute the curvedness at each point. A candidate was 
considered as a feature when it is a top curvedness point for three different neighbourhood scales: 90, 
120 and 150 neighbours. 
 
3.2.2. Registration 

The registration study was performed following the methodology shown in figure 2. For the non-rigid 
data, we chose 3 views from the acquired data set and iteratively registered them into the same 
coordinate basis, using the Global Procrustes ICP [24], with or without previously alignment using PCA. 
It was proposed to use Generalized Procrustes Analysis to achieve the minimization of the cost 
function during the registration. While the stop criterion of the original algorithm was based on the 
number of iterations, we changed it slightly to represent both error-based and finite iteration stop 
criterion. New conditions are presented as follows: (1) The point clouds being registered remain almost 
unchanged in two consecutive iterations (the mean square error between consecutive poses of the 
point clouds is below 1×10

-5
 m); or, if the first condition is not met; (2) A maximum of 300 iterations has 

been reached. 
 

 
Fig. 2. The general workflow used in this work in order to evaluate reconstruction of non-rigid data. On the left, 

multiple views of a patient (O) were taken using a Microsoft Kinect. The depth (D(i)) and colour (C(i)) data is used to 
create point clouds S(i) of the model (I) that are then merged iteratively (II) towards a reconstructed model T. 

 
Considering the rigid data registration, we discarded the first stage of the above presented pipeline and 
took the artificially misaligned views into account for the registration, simulating different acquisition set 
ups. 
 
3.3. Evaluation 

To evaluate the similarity between reconstructed and reference models, Euclidean distance 
measurements, such as Hausdorff Distance or Root Mean Square Error-related metrics, are commonly 
used [7]. Since the point clouds to be compared are not necessarily in the same coordinate system it is 
often necessary to pre-align them to eliminate distances between models, so that remaining distance 
between point clouds indicates the accuracy of used method. Such pre-alignment process can be 
performed using standard registration methods; however it is not guaranteed to pre-align models 
correctly and therefore the evaluation depends on both reconstruction and evaluation alignments. 
 
Other methods are also proposed to evaluate two models by finding the norm distances form the origin 
of their coordinate, which use the norm of the difference between translation vectors. Same proposal is 
presented to find the difference between directional angle and rotation angle as the discrepancy of 
models’ orientations [7]. Hence models are reconstructed in different coordinates, such metric puts 
more overload on system. Besides, misevaluation in symmetric models is probable since more than 
one directional angle may be found. 
 
Using pose-invariant metric can solve the aroused issue, since point clouds can compared in any 
positions. Here, we designed an evaluation metric using distance measurements between histograms 
to compute the similarity of the models. To perform the evaluation, Delaunay Triangulation (DT) of both 
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reference and reconstructed models are extracted. Two matrices are then generated and each one is 
filled by pairwise distances between all vertices of each DT. Following the conversion of each matrix to 
a histogram, the difference of the models is computed using cross-correlation of the histograms. Figure 
3 depicts how the matrices are generated and filled by DT of each model. Regarding cross-correlation, 
as values approaches 1, it is concluded models are more similar, hence the distance between point 
clouds are less anticipating better reconstruction output. In reverse, near -1 value indicates mismatch, 
while 0 shows that there is no meaningful similarity between point clouds. 
 

 
 

Fig. 3. Computing proposed metric by the histogram of DT of a point cloud 
 
 
Besides, common methods such as Chi-square and Earth Movers distances can also be applied, but 
forasmuch as there is no significant deference between results obtained by them, they have been 
ignored in the metric to avoid redundancy. In this study, we evaluate our results using both the 
Hausdorff Distance and the designed Cross-Correlation measure.  

4. Results and discussions 

4.1. Inlier selection: RANSAC 

The RANSAC inlier selection was tested using different point clouds. It was observed that for views 
with different information or with irregular shapes, it is very difficult to correctly define a sub-surface of 
inliers that correctly describes the model while being present in consecutive views. This makes the 
registration more prone to failure. On the other hand, the algorithm is not appropriate when time is 
critical because a high computational cost is required for a good performance 
 
4.2. Keypoint extraction 

4.2.1 Spin Images 

The Spin Image algorithm was tested and, although good results can be found, they strongly rely on 
the resolution of the method. This means that, in order to have a good performance, the preliminary 
stage in which a triangular mesh is created needs to have a great number of elements, thus making 
the response time of the method not appropriate to be used under feasible time. Nevertheless, the 
methodology is expected to have fair results if the meshes for each view are already available. Such 
results suggest that a keypoint-based methodology should not be used, since it would greatly rely on 
the existence or not of features on the object of interest and the body, as previously discussed, is a 
nearly-featureless structure. 
 
4.2.2 Curvedness 

The results in figure 4 show that, although the represented views are consecutive and 
high-overlapping, the candidate point distribution is not similar, thus leading to wrong correspondences. 
Using such correspondences will lead the whole process of registration to be fail. 
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Fig. 4. Corresponding points from curvedness algorithm by [9]; although views have significant overlap, wrong 
points are selected as correspondences. 

 

4.3. 3D reconstruction: rigid data 

4.3.1. Cross-Correlation and Hausdorff Distance 

The Cross-Correlation results in figure 5 show that standard methodologies are capable of 
reconstructing the models well when low initial misalignment levels are found. However, the results 
start to diverge early (ICP for 5 degrees, PCA+ICP for 10 degrees). The divergence point occurs very 
soon and avoids the usage of such methods for low-overlapping point clouds with very different initial 
pose. The problem is especially severe when high artificial translations and rotations exist, since the 
common methods seem to compensate rotation or translation separately, however not being able to 
produce a good output when both artificial misalignments exist. This avoids the usage of the Kinect on 
a medical environment and restricts its usage in low-controlled conditions and by non-experienced 
users. 
 

Fig. 5. The Cross-Correlation values [ ■ ICP; ■ PCA+ICP ] shown as means with error bars depicting standard 
deviation (µ+σ). Both Bunny and Horse datasets results are presented for the sampling percentages of 10% and 

50% of the points. A higher correlation corresponds to a better reconstruction. For each shift factor the results for a 
rotational noise from 0 to 35 degrees are shown. 

 
In addition, results are presented in figure 6 using Hausdorff distances as metric. In both situations 
when registration is performed either with or without coarse step, as the differences between views 
increases, quality of reconstruction decreases. But as it was expected, both metrics show positive 
impression of coarse registration step on the quality of reconstructed model. 

 Bunny   Horse 
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Fig. 6- The Hausdorff Distance values [ ■ ICP; ■ PCA+ICP ] shown as means with error bars depicting standard 
deviation (µ+σ). Both Bunny and Horse datasets results are presented for the sampling percentages of 10% and 
50% of the points. A higher Hausdorff Distance corresponds to a worse reconstruction. For each shift factor the 

results for a rotational noise from 0 to 35 degrees are shown. 

 

For both models, it is possible to observe higher errors for the registration of views down sampled to 
50% of points than to 10%. This can be explained by the easier propagation of errors on the alignment. 
If an ambiguous point-to-point correspondence is found, the rest of the correspondences are more 
prone to be erroneous. Such results suggest the need for a robust downsampling method that 
computes the alignment based on robust keypoints. 

Finally, the usage of a coarse alignment stage (PCA) prior to the fine registration is desirable, since 
lower errors are found. This was expected, since the coarse alignment is intended to align the views in 
such way that the fine registration converges to the best solution possible. 

 

4.3.2. Efficiency evaluation with respect to time 

The efficiency evaluation results are shown in table 2. As expected, increasing the number of points, 
the registration takes more time. On the other hand, it is possible to observe that the PCA stage does 
not had any relevant computational complexity to the methodology, increasing the processing time in a 
feasible amount. A small increase on the processing time yields more accurate results as previously 
stated. Nevertheless, an even more efficient methodology should still be developed. 
 
Table 2. The performance evaluation of different methodologies on the registraton of rigid models. The presented 

values are the average for 5 run under all specified conditions. 

Points Methods 

Time (sec) 

�(±�)/view 

# Iteration 

�(±�)/view 

Coarse registration Fine registration Fine registration 

10% 

ICP - 12.568 (± 0.889) 199.613 (± 1.878) 

PCA+ICP 1.017 (± 4×10-4) 10.933 (± 1.977) 199.613 (± 1.878) 

50% 

ICP - 46.133 (± 22.767) 115.134 (± 65.89) 

PCA+ICP 0.079 (± 0.004) 48.284 (± 21.701) 120.501 (± 64.867) 
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4.4. 3D reconstruction: non-rigid data 

4.4.1 Point cloud generation 

As already mentioned, the Kinect data presents different types of noises. In our acquisition system 
errors are notably observed at the edges of represented objects. This type of spatial noise, that Malick 
et al. [15] name lateral noise, creates irregular edges in a representation of objects which silhouettes 
are in reality smooth. It also originates along the contour of a given foreground, image elements to be 
expanded to background and/or the other way around, as seen in figure 7. Furthermore, lateral noise 
seems to depend on the spatial context of an object within the frame. A failed output triangulation over 
the border-adjoining background object was mentioned as a plausible cause by Mallick et al. [15], 
however, the authors do not present a usable solution for this problem. They lead not only to 
inaccurate depth boundaries or reduced lateral resolution but particularly when the depth map is 
mapped to the RGB image, visible artefacts can be observed. 
 

 

Fig. 7. Example of generated coloured point cloud from the Kinect RGB-D data, and highlighted (orange rectangle) 
presence of lateral noise.  

 
4.4.2 Reconstruction of the female torso 

Concerning non-rigid data, the female torso and the human head models were reconstructed. The 
output of methods is visually compared figure 8. The results indicate that reconstruction has not been 
performed well, since relevant structures of the breast, such as the nipples and the breast contour 
appear duplicated and noisy. Additionally, the texture of the reconstruction is highly inhomogeneous, 
meaning that the raw RGB-D data was affected by the illumination conditions the acquisition set up. 
The usage of PCA as coarse alignment, prior to the fine registration, suggests an improvement on the 
quality of the reconstruction. Nevertheless, the reconstruction is still not optimal as observable, 
meaning that a new coarse registration methodology could overcome the presented challenge. 
 

 

Fig. 8. Reconstruction of the female torso: (a) ground truth data by laser scanner, (b) reconstruction by ICP without 
coarse step and (c) reconstruction by PCA as coarse step and ICP 
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4.4.3 Reconstruction of the human head 

As for the female torso, the reconstruction of the human head (shown in figure 9) is highly deformed 
and noisy. It is possible to observe the effect of the previously discussed lateral noise in both the 
reference (noisy texture on the Kinect Fusion reconstruction) and the reconstructed models (presence 
of grey noise on the face of the subject being reconstructed). The current registration pipeline seems 
able to approximate the views, however not being capable of merging them into an ideal 
reconstruction.  
 

 
Fig. 9. Reconstruction of the human head, (a) ground truth data from Kinect Fusion, (b) reconstruction only by ICP 

and (c) Coarse registration (PCA) followed by ICP 

5. Conclusion and future work 

3D Body scanning is a technique which can be accompanied in biomedical procedures in order to ease 
the cure of diseases. However, requirements such as cost, timing and proficiency of users play 
determinant role in the usage of this technique. The advance of low-cost sensors, such as Microsoft 
Kinect has enhanced the quality of reconstruction.  
 
In this paper, we aimed at analysing the challenges of using such low-cost device in biomedical 
applications. Considering the pipeline, in the first stage while patient is being scanned by Kinect, 
challenges such as patient movement and distance between patient and sensor are arose. Hence the 
output of Kinect is a depth map, regarding to calibration of the device it should be converted to point 
cloud. Existing challenges include noises caused by device, which have been analysed before. 
 
The quality of reconstruction depends not only on both scanning device and registration steps, but also 
the characteristics of the scanning object that, generally, within medical context, comprehends bare 
body parts that can be regarded as near featureless, deformable or dynamic. Other than that, when the 
aligning single views present high rotational and/or translation differences from each other, common 
single stage registration methodologies often fail.  
 
Due to registration algorithm, as it was proposed in other researches, using two-step registration 
procedure reconstructs better models. This claim was proved by conducting experiments using rigid 
models. It was shown that by increasing artificial misalignment, single step ICP fails, but in the 
presence of PCA as coarse registration procedure, better results were obtained. Nevertheless, the 
obtained results are not enough when dealing with high rotational and translational misalignments 
between views. 
 
Performing accurate reconstruction requires methods which can withstand high degrees of rotational 
and translation noise. The importance of coarse registration stage is clarified when fine stage is too 
sensitive to views posture and outliers. Common coarse methods’ requirements are not satisfying the 
data provided by low-cost sensors; hence they require large rigid overlapping areas, or reconstruction 
takes a lot of time. As the size of point cloud grows, common methods fail to perform the reconstruction 
task since they need to evaluate all the points to find correct correspondences.  
 
Following the premises that (1) a coarse alignment prior to the registration is desirable but still not 
enough and (2) down-sampled versions of the views lead to lower errors, the obtained results suggest 
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that a new coarse registration methodology is needed. Such methodology should take into account 
morphological information of the point cloud to choose robust keypoints (dealing in this way with the 
featureless nature of the human body) based on which the coarse alignment can be done. Additionally, 
colour information can be taken account to guide the reconstruction and guarantee that the texture of 
the reconstructed point clouds is reasonably close to the original information.   
 
Moreover, regarding the evaluation metrics, Euclidean distances as metrics present feeble 
performance and are inconsistent with visual output since they require both comparing models to be 
completely aligned. To perform evaluation of the registration, metrics that posed invariant are required 
and should be searched for. The inclusion of normal vector, angles and distance information could be 
essential to develop a robust metric. Finally, future work must also focus on the point cloud generation 
stage, developing software that filters the generated point cloud towards the elimination of the effect of 
lateral noise and avoiding the presence of background information on the models. 
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